شبکه های عصبی مصنوعی (ANN) یا Artificial Neural Networks و به عبارت دیگر سیستم های اتصالگر، سیستم های محاسبه کننده ای هستند که از شبکه های عصبی زیستی الهام گرفته شده اند.
این سیستم ها، با بررسی مثال ها، فعالیت ها را یادگیری می کنند (به عبارت دیگر عملکرد خود را در در انجام فعالیت ها به مرور بهبود می دهند) و عموماً این اتفاق بدون هیچ برنامه نویسی مختص به فعالیت انجام می شود.
برای مثال، در شناسایی تصویر، این شبکه ها می توانند یاد بگیرند که تصاویر شامل گربه را با تحلیل تصاویر مثالی که قبلاً بطور دستی به عنوان “با گربه” یا “بدون گربه” برچسب گذاری شدند، شناسایی کنند و از این نتایج برای شناسایی گربه در تصاویر دیگر استفاده نمایند. شبکه های عصبی این عمل را بدون دانش قبلی در مورد گربه انجام می دهند؛ یعنی از مثلاً از مو، دم، سیبیل یا صورت گربه خبر ندارند. در عوض، خود مجموعه مشخصه های مرتبط را از مطالب آموزشی ای که پردازش می کنند، توسیع می دهند.
یک ANN بر مجموعه ای از واحدهای متصل یا گره، به نام نورون های مصنوعی، مبتنی است (مشابه نورون های زیستی در مغز حیوان). هر اتصال (سیناپس) میان نورون ها می تواند سیگنالی را از یک نورون به نورون دیگر انتقال دهد. نورون دریافت کننده (پُست سیناپتیک) می تواند سیگنال (ها) و سپس نورون های سیگنالی متصل به آن را پردازش کند.
شبکه عصبی مصنوعی روشی عملی برای یادگیری توابع گوناگون نظیر توابع با مقادیر حقیقی، توابع با مقادیر گسسته و توابع با مقادیر برداری میباشد.
مطالعه شبکه های عصبی مصنوعی تا حد زیادی ملهم از سیستم های یادگیر طبیعی است که در آنها یک مجموعه پیچیده از نرونهای به هم متصل درکار یادگیری دخیل هستند.
گمان میرود که مغز انسان از تعداد 1011 نرون تشکیل شده باشد که هر نرون با تقریبا 104 نرون دیگر در ارتباط است. سرعت سوئیچنگ نرونها در حدود 3-10 ثانیه است که در مقایسه با کامپیوترها 10-10 ثانیه بسیار ناچیز مینماید. با این وجود آدمی قادر است در 0.1 ثانیه تصویر یک انسان را بازشناسائی نماید. ولی برای کامپیتر دقایقی طول می کشد که این بازشناسی انجام شود.